学校首页 办公系统 教师邮箱 智慧校园
 
学院首页 院长说专业
 

张贤敏博士

发布者:数统学院发布时间:2021-06-04浏览次数:5078

个人简介:张贤敏,副教授/博士,研究方向分数阶微分方程、脉冲分数阶微分方程等。在SCI\EI收录外文期刊上发表论文21篇。

学习工作经历

1998920026月在江西师范大学就读学士;

20027—20048月在江西省九江县第一中学任数学教师;

20049—20076月在重庆大学就读硕士;

20079—200116月在重庆大学就读博士;

20117月—20181月九江学院电子学院任教;

20182—至今长江师范学院数学与统计学院任教。

科研成果

1.The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Analysis: Hybrid Systems,2010,4,(SCI)第一作者

2.On the concept of general solution for impulsive differential equations of fractional order q Î(0,1), Applied Mathematics and Computation,2014,247,(SCI)第一作者

3.On the concept of general solutions for impulsive differential equations of fractional order qÎ(1, 2), Applied Mathematics and Computation, 2015,268,(SCI)独著

4.The general solution of differential equations with Caputo-Hadamard fractional derivatives and impulsive effect, Advances in Difference Equations, 2015, 215,(SCI)独著

5.The general solution for impulsive differential equations with Riemann- Liouville fractional-order q Î(1, 2), Open Mathematics,2015,13,(SCI)第一作者

6.The general solution for impulsive differential equations with Hadamard fractional derivative of order q(1, 2), Advances in Difference Equations,2016, 14,(SCI)第一作者

7.The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order qÎ(Î(1,2)), Mathematical Problems in Engineering,2016, 8101802,(SCI)第一作者

8.On the general solution of impulsive systems with Hadamard fractional derivatives, Mathematical Problems in Engineering,2016,2814310,(SCI)第一作者

9.On the concept of general solution for impulsive differential equations of fractional-order qÎ(2, 3), Open mathematics,2016,14,(SCI)第一作者

10.On impulsive partial differential equations with Caputo- Hadamard fractional derivatives, Advances in Difference Equations,2016,281,(SCI)独著

11.The general solution of impulsive systems with Riemann-Liouville fractional derivatives, Open mathematics,2016,14,(SCI)第一作者

12.On the fractional differential equations with not instantaneous impulses,

Open physics,2016,14,(SCI)第一作者

13.Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 (and qÏZ) with finite delays, Advances in Difference Equations,2017,123,(SCI)第一作者

14.A class of fractional order systems with not instantaneous impulses, Journal of nonlinear sciences and applications,2017,10,(SCI)独著

15.On general solution for fractional differential equations with not instantaneous impulses, Fundamenta Informaticae,2017,151,(SCI)第一作者

16.Non-uniqueness of solution for initial value problem of impulsive Caputo-Katugampola fractional differential equations, Int. J. Dynamical Systems and Differential Equations,2020,10,(EI)独著

17.The non-uniqueness of solution for initial value problem of impulsive differential equations involving higher order Katugampola fractional derivative, Advances in Difference Equations,2020,85,(SCI)独著

18.Nonuniqueness of solution for initial value problems of impulsive Hilfer fractional differential equations, Mathematical Methods in the Applied Sciences, 2021,44,(SCI)独著

19.A new method for searching the integral solution of system of Riemann-Liouville fractional differential equations with non-instantaneous impulses, Journal of Computational and Applied Mathematics,2021,388,(SCI)独著

20.On the initial value problem of impulsive differential equation involving Caputo-Katugampola fractional derivative of order qÎ(1,2), Int. J. Dynamical Systems and Differential Equations, 录用待刊:https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijdsde(EI)独著

21.Non-uniqueness of solution for initial value problem of impulsive fractional partial differential equations, Int.J. Dynamical Systems and Differential Equations,录用待刊:https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijdsde(EI)独著

 
版权所有 长江师范学院数学与统计学院 联系地址:重庆市涪陵区聚贤大道16号